مقایسه مدل های شبکه عصبی مصنوعی و رگرسیونی در تخمین وزن خشک و جذب فسفرگیاه ذرت

نویسندگان

محمدرضا مقصودی

عادل ریحانی تبار

نصرت اله نصرت اله نجفی

چکیده

در این تحقیق مقایسه­ای بین شبکه عصبی مصنوعی (ann) و مدل­های رگرسیونی خطی در تخمین وزن خشک و جذب فسفر گیاه ذرت از روی فسفر خاک استخراج شده توسط عصاره­گیرهای مختلف انجام یافت.  برای این منظور 25 نمونه مرکب خاک سطحی (cm30-0) از نقاط مختلف استان آذربایجان شرقی جمع آوری و در آن خاک­ها گیاه ذرت (سینگل کراس 704) در سه تکرار در گلخانه کشت شد. بعد از 60 روز گیاهان برداشت و وزن خشک بخش هوایی و غلظت فسفر در آن اندازه گیری شد.  نتایج نشان داد که ضریب تبیین مدل رگرسیون خطی بین فسفر استخراج شده با روش های کالول و اولسن با وزن خشک بخش هوایی ذرت به­ترتیب برابر  49/0 و 44/0 بودند. با توجه به نتایج مدل شبکه عصبی مصنوعی روش اولسن برای تخمین وزن خشک و روش آب مقطر برای تخمین غلظت فسفر بخش هوایی ذرت برتر از سایر روش ها بودند. در پیش­بینی شاخص­های مهم وزن خشک و فسفر جذب شده توسط گیاه ذرت بر مبنای غلظت فسفر استخراج شده توسط عصاره­گیرهای مختلف، ضرایب تبیین مدل­های شبکه عصبی مصنوعی بیشتر از مدل­های رگرسیونی خطی حاصل گردید، لذا چنین نتیجه­گیری شد که می­توان از شبکه عصبی مصنوعی در مطالعات آزمون خاک برای فسفر بهره گرفت.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه مدل‌های شبکه عصبی مصنوعی و رگرسیونی در تخمین وزن خشک و جذب فسفرگیاه ذرت

در این تحقیق مقایسه­ای بین شبکه عصبی مصنوعی (ANN) و مدل­های رگرسیونی خطی در تخمین وزن خشک و جذب فسفر گیاه ذرت از روی فسفر خاک استخراج‌شده توسط عصاره­گیرهای مختلف انجام یافت.  برای این منظور 25 نمونه مرکب خاک سطحی (cm30-0) از نقاط مختلف استان آذربایجان شرقی جمع‌آوری و در آن خاک­ها گیاه ذرت (سینگل کراس 704) در سه تکرار در گلخانه کشت شد. بعد از 60 روز گیاهان برداشت و وزن خشک بخش هوایی و غلظت فسفر ...

متن کامل

ارزیابی مدل‌های رگرسیونی و شبکه عصبی مصنوعی در تخمین هدایت هیدرولیکی اشباع خاک در مازندران

هدایت هیدرولیکی اشباع یکی از خصوصیات مهم هیدرولیکی در علوم مرتبط با آب، خاک و کشاورزی می­باشد که در مدلسازی حرکت املاح و آب در خاک بسیار اهمیت دارد.اندازه­گیری آزمایشگاهی و صحرایی آن دشوار، وقت‌گیر و پرهزینه بوده و امکان شناسایی تغییرپذیری مکانی و زمانی آن در مقیاس وسیع عملا وجود ندارد.امروزه با استفاده از روش­های غیرمستقیم مانند توابع انتقالی می­توان آن را با دقت بالایی برآورد نمود. پژوهش حاضر...

متن کامل

مقایسه مدل های تجربی، رگرسیونی و شبکه عصبی مصنوعی در برآورد تابش خالص دریافتی(Rs) در ایستگاه سینوپتک زاهدان

تابش خورشیدی در بسیاری از مدلهای هیدرولوژی به عنوان پارامتری مهم در تخمین تبخیر و تعرق می­باشد. تهیه و ایجاد وسایل انداره­گیری این پارامتر بسیار پرهزینه می­باشد. در این تحقیق از داده­های اندازه­گیری شده تابش (Rs) در سال های 1385 تا 1389 ایستگاه هواشناسی زاهدان استفاده شده است. در این تحقیق چند مدل غیرخطی نظیر شبکه عصبی با الگوریتم BFGS و شبکه عصبی با کاهش شیب توام و رگرسیون خطی محلی با استفاده ...

متن کامل

تخمین پایداری خاکدانه در خاک‌های جنگلی استان گیلان بوسیله شبکه عصبی مصنوعی و توابع انتقالی رگرسیونی

استفاده از شبکه­های عصبی مصنوعی و توابع انتقالی رگرسیونی در برآورد ویژگی­های دیریافت خاک از جمله پایداری خاکدانه­ها، هزینه و زمان لازم برای اندازه­گیری مستقیم این ویژگی­ها را کاهش می­دهد. در این پژوهش 100 نمونه خاک از جنگل­های استان گیلان تهیه شد. ماده آلی، جرم ویژه ظاهری، کربنات کلسیم معادل، جرم ویژه حقیقی، تخلخل، مقاومت مکانیکی خاک، رس، شن، سیلت، pH و هدایت الکتریکی به عنوان متغیرهای مستقل و ...

متن کامل

مقایسه روش های شبکه عصبی بیزین و شبکه عصبی مصنوعی در تخمین رسوبات معلق رودخانه ها (مطالعه موردی: سیمینه رود)

زمینه و هدف: شبیه سازی و ارزیابی آورد رسوب رودخانه از جمله مسایل مهم در مدیریت منابع آب می باشد. اندازه گیری مقدار رسوب به روش های متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده و گاهی از دقت کافی نیز برخوردار نمی باشد.  روش بررسی: در این پژوهش تخمین رسوب رودخانه سیمینه رود واقع در استان آذربایجان غربی، با استفاده از شبکه عصبی بیـزین مورد بررسی قرار گرفته و نتایج آن با روش های مرسـوم هوشمند هم...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
دانش آب و خاک

ناشر: دانشگاه تبریز

ISSN 2008-5133

دوره 25

شماره 2 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023